KPCA plus LDA : a complete kernel Fisher discriminant framework for feature extraction and recognition
This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 2 vom: 18. Feb., Seite 230-44 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2005
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Comparative Study Evaluation Study Journal Article Research Support, Non-U.S. Gov't Validation Study |