KPCA plus LDA : a complete kernel Fisher discriminant framework for feature extraction and recognition

This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 2 vom: 18. Feb., Seite 230-44
1. Verfasser: Yang, Jian (VerfasserIn)
Weitere Verfasser: Frangi, Alejandro F, Yang, Jing-Yu, Zhang, David, Jin, Zhong
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, Non-U.S. Gov't Validation Study
Beschreibung
Zusammenfassung:This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms
Beschreibung:Date Completed 08.03.2005
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1939-3539