Scaling behavior of delayed demixing, rheology, and microstructure of emulsions flocculated by depletion and bridging
This paper describes an experimental comparison of microstructure, rheology, and demixing of bridging- and depletion-flocculated oil-in-water emulsions. Confocal scanning laser microscopy imaging showed that bridging-flocculated emulsions were heterogeneous over larger length scales than depletion-f...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 26 vom: 21. Dez., Seite 11321-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | This paper describes an experimental comparison of microstructure, rheology, and demixing of bridging- and depletion-flocculated oil-in-water emulsions. Confocal scanning laser microscopy imaging showed that bridging-flocculated emulsions were heterogeneous over larger length scales than depletion-flocculated emulsions. As a consequence, G' as determined from diffusing wave spectroscopy (DWS) corresponded well with G' as measured macroscopically for the depletion-flocculated emulsions, but this correspondence was not found for the bridging-flocculated emulsions. The heterogeneity of bridging-flocculated emulsions was confirmed by DWS-echo measurements, indicating that their structure breaks up into large fragments upon oscillatory shear deformation larger than 1%. Depletion- and bridging-flocculated emulsions showed a different scaling of the storage modulus with the volume fraction of oil and a difference in percolation threshold volume fraction. These differences will be discussed on the basis of the two types of droplet-droplet interactions studied. Gravity-induced demixing occurred in both emulsions, but the demixing processes differed. After preparation of bridging-flocculated emulsions, serum immediately starts to separate, whereas depletion-flocculated systems at polysaccharide concentrations in the overlap regime usually showed a delay time before demixing. The delay time was found to scale with the network permeability, B; the viscosity, eta, of the aqueous phase; and the density difference between oil and water, Deltarho, as tdelay approximately B(-1)etaDeltarho(-1). The results are in line with the mechanism proposed by Starrs et al. (J. Phys.: Condens. Matter 2002, 14, 2485-2505), where erosion of the droplet network leads to widening of the channels within the droplet networks, facilitating drainage of liquid |
---|---|
Beschreibung: | Date Completed 03.02.2006 Date Revised 14.12.2004 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |