Unifying Dimensions : A Linear Adaptive Mixer for Lightweight Image Super-Resolution

Window-based Transformers have demonstrated outstanding performance in super-resolution due to their adaptive modeling capabilities through local self-attention (SA). However, they exhibit higher computational complexity and inference latency than convolutional neural networks. In this paper, we fir...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2025) vom: 17. Okt.
Auteur principal: Hu, Zhenyu (Auteur)
Autres auteurs: Sun, Wanjie
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article