Unifying Dimensions : A Linear Adaptive Mixer for Lightweight Image Super-Resolution
Window-based Transformers have demonstrated outstanding performance in super-resolution due to their adaptive modeling capabilities through local self-attention (SA). However, they exhibit higher computational complexity and inference latency than convolutional neural networks. In this paper, we fir...
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2025) vom: 17. Okt. |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2025
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Schlagworte: | Journal Article |
| Online verfügbar |
Volltext |