Evolutionary and Functional Significance of ShPP2C1 in the Parasitic Life Strategy of Striga

© The Author(s) 2025. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprintsoup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink serv...

Description complète

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - (2025) vom: 18. Sept.
Auteur principal: Katagiri, Sotaro (Auteur)
Autres auteurs: Fukuhara, Daisuke, Fujiyama, Keisuke, Fujioka, Hijiri, Sugimoto, Yukihiro, Okamoto, Masanori
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Striga Abscisic acid Arabidopsis Molecular biology Parasitic plant Phylogenetic analysis
Description
Résumé:© The Author(s) 2025. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprintsoup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
Parasitic plants have evolved specialized mechanisms to extract water and nutrients from their hosts, often causing severe agricultural losses. Striga hermonthica, a member of the Orobanchaceae family, exhibits a unique adaptation in the abscisic acid (ABA) signaling pathway, which enhances its growth efficiency during parasitism. Striga hermonthica protein phosphatase 2C (ShPP2C1) is a negative regulator of ABA signaling but, unlike typical PP2Cs, is not inhibited by ABA receptors (PYLs). Because of ShPP2C1, Striga hermonthica shows low ABA sensitivity and high transpiration, facilitating resource uptake from the host. To determine whether similar PP2Cs are conserved in other parasitic Orobanchaceae, we performed a phylogenetic analysis using public sequence data, revealing that ShPP2C1 is unique to the genus Striga genus. Furthermore, in vitro phosphatase assay revealed specific amino acid residues responsible for disrupting the inhibition by PYLs. Structural comparisons between ShPP2C1 and Arabidopsis thaliana ABI1 showed that the lack of interaction to PYLs is due to steric hindrance from a combination of amino acid substitutions. These findings provide new insight into the molecular basis of Striga's parasitic strategy
Description:Date Revised 19.09.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1460-2431
DOI:10.1093/jxb/eraf412