Exceptional Oxidation Resistance of High-Entropy Carbides up to 3600 °C

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 34 vom: 04. Aug., Seite e2507254
1. Verfasser: Wen, Zihao (VerfasserIn)
Weitere Verfasser: Liu, Yiwen, Yang, Jing, Chen, Yuhui, Fu, Yaming, Zhuang, Lei, Yu, Hulei, Chu, Yanhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article composition engineering high‐entropy carbides oxidation resistance ultrahigh‐temperature materials
LEADER 01000caa a22002652c 4500
001 NLM391538888
003 DE-627
005 20250908232141.0
007 cr uuu---uuuuu
008 250829s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202507254  |2 doi 
028 5 2 |a pubmed25n1561.xml 
035 |a (DE-627)NLM391538888 
035 |a (NLM)40474418 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen, Zihao  |e verfasserin  |4 aut 
245 1 0 |a Exceptional Oxidation Resistance of High-Entropy Carbides up to 3600 °C 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Achieving exceptional oxidation resistance at elevated temperatures is long desirable for ultrahigh-temperature materials to be used in relevant applications such as hypersonic flights, re-entry vehicles, and propulsion systems. However, their practical service temperatures are typically limited to below 3000 °C. Here, the exploration of (Hf, Ta, Zr, W)C high-entropy carbides with exceptional oxidation resistance of 2.7 µm·s-1 up to 3600 °C through a high-entropy compositional engineering strategy is reported. This impressive oxidation behavior arises from the formation of unique dual-structural oxide layers involving numerous high-melting-point W particles uniformly embedded within molten (Hf, Me)6(Ta, Me)2O17 (Me = metal element, Hf, Ta, Zr, and W) primary oxides. The developed (Hf, Ta, Zr, W)C demonstrates a significant breakthrough for ultrahigh-temperature applications up to 3600 °C, paving the way for further design of advanced ultrahigh-temperature materials capable of serving at higher service temperatures 
650 4 |a Journal Article 
650 4 |a composition engineering 
650 4 |a high‐entropy carbides 
650 4 |a oxidation resistance 
650 4 |a ultrahigh‐temperature materials 
700 1 |a Liu, Yiwen  |e verfasserin  |4 aut 
700 1 |a Yang, Jing  |e verfasserin  |4 aut 
700 1 |a Chen, Yuhui  |e verfasserin  |4 aut 
700 1 |a Fu, Yaming  |e verfasserin  |4 aut 
700 1 |a Zhuang, Lei  |e verfasserin  |4 aut 
700 1 |a Yu, Hulei  |e verfasserin  |4 aut 
700 1 |a Chu, Yanhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 34 vom: 04. Aug., Seite e2507254  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:34  |g day:04  |g month:08  |g pages:e2507254 
856 4 0 |u http://dx.doi.org/10.1002/adma.202507254  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 34  |b 04  |c 08  |h e2507254