Exceptional Oxidation Resistance of High-Entropy Carbides up to 3600 °C

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 34 vom: 04. Aug., Seite e2507254
Auteur principal: Wen, Zihao (Auteur)
Autres auteurs: Liu, Yiwen, Yang, Jing, Chen, Yuhui, Fu, Yaming, Zhuang, Lei, Yu, Hulei, Chu, Yanhui
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article composition engineering high‐entropy carbides oxidation resistance ultrahigh‐temperature materials
Description
Résumé:© 2025 Wiley‐VCH GmbH.
Achieving exceptional oxidation resistance at elevated temperatures is long desirable for ultrahigh-temperature materials to be used in relevant applications such as hypersonic flights, re-entry vehicles, and propulsion systems. However, their practical service temperatures are typically limited to below 3000 °C. Here, the exploration of (Hf, Ta, Zr, W)C high-entropy carbides with exceptional oxidation resistance of 2.7 µm·s-1 up to 3600 °C through a high-entropy compositional engineering strategy is reported. This impressive oxidation behavior arises from the formation of unique dual-structural oxide layers involving numerous high-melting-point W particles uniformly embedded within molten (Hf, Me)6(Ta, Me)2O17 (Me = metal element, Hf, Ta, Zr, and W) primary oxides. The developed (Hf, Ta, Zr, W)C demonstrates a significant breakthrough for ultrahigh-temperature applications up to 3600 °C, paving the way for further design of advanced ultrahigh-temperature materials capable of serving at higher service temperatures
Description:Date Revised 28.08.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202507254