Highly Exposed Ultra-Small High-Entropy Sulfides with d-p Orbital Hybridization for Efficient Oxygen Evolution

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 33 vom: 25. Aug., Seite e2508610
Auteur principal: Cai, Huizhu (Auteur)
Autres auteurs: He, Sizhen, Yang, Hengpan, Huang, Qian, Luo, Fengting, Hu, Qi, Zhang, Xue, He, Chuanxin
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article high‐entropy alloys high‐entropy sulfides orbital hybridization oxygen evolution reaction size engineering
LEADER 01000caa a22002652c 4500
001 NLM391489038
003 DE-627
005 20250908232133.0
007 cr uuu---uuuuu
008 250821s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202508610  |2 doi 
028 5 2 |a pubmed25n1561.xml 
035 |a (DE-627)NLM391489038 
035 |a (NLM)40459467 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cai, Huizhu  |e verfasserin  |4 aut 
245 1 0 |a Highly Exposed Ultra-Small High-Entropy Sulfides with d-p Orbital Hybridization for Efficient Oxygen Evolution 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Precise regulation of electronic structure and nanoscale geometry represents a transformative strategy for breaking the activity-stability trade-off in oxygen evolution electrocatalysts. Here, highly exposed ultra-small high-entropy sulfides (HES, 5.2 nm) confined in porous carbon nanofibers are designed. This structure involves a dual-engineering synergistic effect combining d-p orbital hybridization and nanoconfinement. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations reveal hybridization between transition metal 3d orbitals and sulfur 3p orbitals. This orbital interaction induces a d-band center shift toward the Fermi level and facilitates interfacial charge redistribution, endowing HES with superior electron-donating capability to accelerate proton-coupled electron transfer kinetics. Such electronic modulation significantly optimizes the adsorption of oxygen evolution reaction (OER) intermediates (*OH, *O, *OOH). Experimentally, the HES demonstrates exceptional OER performance, exhibiting a low overpotential of 200 mV at 10 mA cm-2 and remarkable durability with negligible current decay during 300 h operation across current densities ranging from 10 to 100 mA cm-2. This work establishes a dual optimization strategy leveraging orbital hybridization engineering and size engineering for advanced electrocatalyst design, providing a new design approach in energy conversion technologies 
650 4 |a Journal Article 
650 4 |a high‐entropy alloys 
650 4 |a high‐entropy sulfides 
650 4 |a orbital hybridization 
650 4 |a oxygen evolution reaction 
650 4 |a size engineering 
700 1 |a He, Sizhen  |e verfasserin  |4 aut 
700 1 |a Yang, Hengpan  |e verfasserin  |4 aut 
700 1 |a Huang, Qian  |e verfasserin  |4 aut 
700 1 |a Luo, Fengting  |e verfasserin  |4 aut 
700 1 |a Hu, Qi  |e verfasserin  |4 aut 
700 1 |a Zhang, Xue  |e verfasserin  |4 aut 
700 1 |a He, Chuanxin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 33 vom: 25. Aug., Seite e2508610  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:33  |g day:25  |g month:08  |g pages:e2508610 
856 4 0 |u http://dx.doi.org/10.1002/adma.202508610  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 33  |b 25  |c 08  |h e2508610