|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM391489038 |
003 |
DE-627 |
005 |
20250908232133.0 |
007 |
cr uuu---uuuuu |
008 |
250821s2025 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202508610
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1561.xml
|
035 |
|
|
|a (DE-627)NLM391489038
|
035 |
|
|
|a (NLM)40459467
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cai, Huizhu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Highly Exposed Ultra-Small High-Entropy Sulfides with d-p Orbital Hybridization for Efficient Oxygen Evolution
|
264 |
|
1 |
|c 2025
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 21.08.2025
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2025 Wiley‐VCH GmbH.
|
520 |
|
|
|a Precise regulation of electronic structure and nanoscale geometry represents a transformative strategy for breaking the activity-stability trade-off in oxygen evolution electrocatalysts. Here, highly exposed ultra-small high-entropy sulfides (HES, 5.2 nm) confined in porous carbon nanofibers are designed. This structure involves a dual-engineering synergistic effect combining d-p orbital hybridization and nanoconfinement. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations reveal hybridization between transition metal 3d orbitals and sulfur 3p orbitals. This orbital interaction induces a d-band center shift toward the Fermi level and facilitates interfacial charge redistribution, endowing HES with superior electron-donating capability to accelerate proton-coupled electron transfer kinetics. Such electronic modulation significantly optimizes the adsorption of oxygen evolution reaction (OER) intermediates (*OH, *O, *OOH). Experimentally, the HES demonstrates exceptional OER performance, exhibiting a low overpotential of 200 mV at 10 mA cm-2 and remarkable durability with negligible current decay during 300 h operation across current densities ranging from 10 to 100 mA cm-2. This work establishes a dual optimization strategy leveraging orbital hybridization engineering and size engineering for advanced electrocatalyst design, providing a new design approach in energy conversion technologies
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a high‐entropy alloys
|
650 |
|
4 |
|a high‐entropy sulfides
|
650 |
|
4 |
|a orbital hybridization
|
650 |
|
4 |
|a oxygen evolution reaction
|
650 |
|
4 |
|a size engineering
|
700 |
1 |
|
|a He, Sizhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Hengpan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Qian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Fengting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Qi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Chuanxin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 37(2025), 33 vom: 25. Aug., Seite e2508610
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:37
|g year:2025
|g number:33
|g day:25
|g month:08
|g pages:e2508610
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202508610
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 37
|j 2025
|e 33
|b 25
|c 08
|h e2508610
|