Highly Exposed Ultra-Small High-Entropy Sulfides with d-p Orbital Hybridization for Efficient Oxygen Evolution

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 33 vom: 25. Aug., Seite e2508610
Auteur principal: Cai, Huizhu (Auteur)
Autres auteurs: He, Sizhen, Yang, Hengpan, Huang, Qian, Luo, Fengting, Hu, Qi, Zhang, Xue, He, Chuanxin
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article high‐entropy alloys high‐entropy sulfides orbital hybridization oxygen evolution reaction size engineering
Description
Résumé:© 2025 Wiley‐VCH GmbH.
Precise regulation of electronic structure and nanoscale geometry represents a transformative strategy for breaking the activity-stability trade-off in oxygen evolution electrocatalysts. Here, highly exposed ultra-small high-entropy sulfides (HES, 5.2 nm) confined in porous carbon nanofibers are designed. This structure involves a dual-engineering synergistic effect combining d-p orbital hybridization and nanoconfinement. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations reveal hybridization between transition metal 3d orbitals and sulfur 3p orbitals. This orbital interaction induces a d-band center shift toward the Fermi level and facilitates interfacial charge redistribution, endowing HES with superior electron-donating capability to accelerate proton-coupled electron transfer kinetics. Such electronic modulation significantly optimizes the adsorption of oxygen evolution reaction (OER) intermediates (*OH, *O, *OOH). Experimentally, the HES demonstrates exceptional OER performance, exhibiting a low overpotential of 200 mV at 10 mA cm-2 and remarkable durability with negligible current decay during 300 h operation across current densities ranging from 10 to 100 mA cm-2. This work establishes a dual optimization strategy leveraging orbital hybridization engineering and size engineering for advanced electrocatalyst design, providing a new design approach in energy conversion technologies
Description:Date Revised 21.08.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202508610