Towards the Flatter Landscape and Better Generalization in Federated Learning under Client-level Differential Privacy
To defend the inference attacks and mitigate the sensitive information leakages in Federated Learning (FL), client-level Differentially Private FL (DPFL) is the de-facto standard for privacy protection by clipping local updates and adding random noise. However, existing DPFL methods tend to make a s...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 11. Aug.
|
1. Verfasser: |
Shi, Yifan
(VerfasserIn) |
Weitere Verfasser: |
Wei, Kang,
Shen, Li,
Liu, Yingqi,
Wang, Xueqian,
Yuan, Bo,
Tao, Dacheng |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2025
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |