Towards the Flatter Landscape and Better Generalization in Federated Learning under Client-level Differential Privacy
To defend the inference attacks and mitigate the sensitive information leakages in Federated Learning (FL), client-level Differentially Private FL (DPFL) is the de-facto standard for privacy protection by clipping local updates and adding random noise. However, existing DPFL methods tend to make a s...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 11. Aug.
|
Auteur principal: |
Shi, Yifan
(Auteur) |
Autres auteurs: |
Wei, Kang,
Shen, Li,
Liu, Yingqi,
Wang, Xueqian,
Yuan, Bo,
Tao, Dacheng |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2025
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article |