Towards the Flatter Landscape and Better Generalization in Federated Learning under Client-level Differential Privacy

To defend the inference attacks and mitigate the sensitive information leakages in Federated Learning (FL), client-level Differentially Private FL (DPFL) is the de-facto standard for privacy protection by clipping local updates and adding random noise. However, existing DPFL methods tend to make a s...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 11. Aug.
Auteur principal: Shi, Yifan (Auteur)
Autres auteurs: Wei, Kang, Shen, Li, Liu, Yingqi, Wang, Xueqian, Yuan, Bo, Tao, Dacheng
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article