Simplifying Scalable Subspace Clustering and Its Multi-View Extension by Anchor-to-Sample Kernel

As we all known, sparse subspace learning can provide good input for spectral clustering, thereby producing high-quality cluster partitioning. However, it employs complete samples as the dictionary for representation learning, resulting in non-negligible computational costs. Therefore, replacing the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 05., Seite 5084-5098
1. Verfasser: Lu, Zhoumin (VerfasserIn)
Weitere Verfasser: Nie, Feiping, Ma, Linru, Wang, Rong, Li, Xuelong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390493309
003 DE-627
005 20250813232127.0
007 cr uuu---uuuuu
008 250802s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3593057  |2 doi 
028 5 2 |a pubmed25n1529.xml 
035 |a (DE-627)NLM390493309 
035 |a (NLM)40748814 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Zhoumin  |e verfasserin  |4 aut 
245 1 0 |a Simplifying Scalable Subspace Clustering and Its Multi-View Extension by Anchor-to-Sample Kernel 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As we all known, sparse subspace learning can provide good input for spectral clustering, thereby producing high-quality cluster partitioning. However, it employs complete samples as the dictionary for representation learning, resulting in non-negligible computational costs. Therefore, replacing the complete samples with representative ones (anchors) as the dictionary has become a more popular choice, giving rise to a series of related works. Unfortunately, although these works are linear with respect to the number of samples, they are often quadratic or even cubic with respect to the number of anchors. In this paper, we derive a simpler problem to replace the original scalable subspace clustering, whose properties are utilized. This new problem is linear with respect to both the number of samples and anchors, further enhancing scalability and providing more efficient operations. Furthermore, thanks to the new problem formulation, we can adopt a separate fusion strategy for multi-view extensions. This strategy can better measure the inter-view difference and avoid alternate optimization, so as to achieve more robust and efficient multi-view clustering. Finally, comprehensive experiments demonstrate that our methods not only significantly reduce time overhead but also exhibit superior performance 
650 4 |a Journal Article 
700 1 |a Nie, Feiping  |e verfasserin  |4 aut 
700 1 |a Ma, Linru  |e verfasserin  |4 aut 
700 1 |a Wang, Rong  |e verfasserin  |4 aut 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 05., Seite 5084-5098  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:05  |g pages:5084-5098 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3593057  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 05  |h 5084-5098