Simplifying Scalable Subspace Clustering and Its Multi-View Extension by Anchor-to-Sample Kernel
As we all known, sparse subspace learning can provide good input for spectral clustering, thereby producing high-quality cluster partitioning. However, it employs complete samples as the dictionary for representation learning, resulting in non-negligible computational costs. Therefore, replacing the...
| Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 05., Seite 5084-5098 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2025
|
| Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Sujets: | Journal Article |
| Accès en ligne |
Volltext |