Dual Optimization of Electrolyte and Interface in Na-β″-Al2O3 via Ga3+ Doping for Advanced Solid-State Sodium Batteries

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 41 vom: 17. Okt., Seite e03562
1. Verfasser: Qu, Shangqing (VerfasserIn)
Weitere Verfasser: Niu, Tianhao, Qiao, Xianji, Shen, Yanran, Cai, Guohong, Wang, Xiaoge, Wang, Yonggang, Zhou, Zhipeng, Zhang, Shipeng, Zhang, Zeyue, Li, Guobao, Cai, Guanqun, Sun, Junliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Na‐β″‐Al2O3 alloy interfaces gallium ion doping solid‐state electrolytes stacking faults
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Na-β″-Al2O3 is a highly promising solid-state electrolyte (SSE) for solid-state sodium batteries (SSSBs) with a wide electrochemical stability window and excellent stability against metallic sodium. However, its practical application is hindered by the instability of β″ phase (R 3 ¯ $\bar 3$ m) during sintering, low polycrystalline ionic conductivity at room temperature, and poor interfacial contact with sodium anodes. In this study, a stablized SSSB is obtained via doping Ga3+ into Na1.67Mg0.67Al10.33O17 (NMAO), which also suppresses the formation of the β' phase (P63/mmc) and decreases stacking faults. After sintering at 1550 °C for 2 h, Na1.67Mg0.67Al9.33GaO17 (NMA9.33GO) exhibits an ionic conductivity of 9.2 × 10-4 S cm-1 at 30 °C, ≈1.7 times greater than NMAO. Furthermore, Ga3+ doping enhances the wettability with sodium, achieving superior contact stability and the formation of Na-Ga alloys at the interface significantly improves electrode-electrolyte contact stability, achieving a high critical current density (CCD) of 0.8 mA cm-2 and a low interfacial impedance of 16 Ω cm2. A quasi-solid-state battery assembled with Na3V2(PO4)3 (NVP) as the cathode demonstrates excellent cycling stability and rate performance, retaining a high discharge capacity of 91 mAh g-1 at 5 C, and maintaining 87% capacity retention after 1000 cycles at 1 C. This work provides new insights into improving electrolyte performance and interfacial engineering through doping strategies, thereby promoting the development of efficient and long-term SSSBs
Beschreibung:Date Revised 17.10.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202503562