Dual Optimization of Electrolyte and Interface in Na-β″-Al2O3 via Ga3+ Doping for Advanced Solid-State Sodium Batteries

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 41 vom: 17. Okt., Seite e03562
Auteur principal: Qu, Shangqing (Auteur)
Autres auteurs: Niu, Tianhao, Qiao, Xianji, Shen, Yanran, Cai, Guohong, Wang, Xiaoge, Wang, Yonggang, Zhou, Zhipeng, Zhang, Shipeng, Zhang, Zeyue, Li, Guobao, Cai, Guanqun, Sun, Junliang
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Na‐β″‐Al2O3 alloy interfaces gallium ion doping solid‐state electrolytes stacking faults
LEADER 01000caa a22002652c 4500
001 NLM390072834
003 DE-627
005 20251017232918.0
007 cr uuu---uuuuu
008 250725s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202503562  |2 doi 
028 5 2 |a pubmed25n1602.xml 
035 |a (DE-627)NLM390072834 
035 |a (NLM)40708363 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qu, Shangqing  |e verfasserin  |4 aut 
245 1 0 |a Dual Optimization of Electrolyte and Interface in Na-β″-Al2O3 via Ga3+ Doping for Advanced Solid-State Sodium Batteries 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Na-β″-Al2O3 is a highly promising solid-state electrolyte (SSE) for solid-state sodium batteries (SSSBs) with a wide electrochemical stability window and excellent stability against metallic sodium. However, its practical application is hindered by the instability of β″ phase (R 3 ¯ $\bar 3$ m) during sintering, low polycrystalline ionic conductivity at room temperature, and poor interfacial contact with sodium anodes. In this study, a stablized SSSB is obtained via doping Ga3+ into Na1.67Mg0.67Al10.33O17 (NMAO), which also suppresses the formation of the β' phase (P63/mmc) and decreases stacking faults. After sintering at 1550 °C for 2 h, Na1.67Mg0.67Al9.33GaO17 (NMA9.33GO) exhibits an ionic conductivity of 9.2 × 10-4 S cm-1 at 30 °C, ≈1.7 times greater than NMAO. Furthermore, Ga3+ doping enhances the wettability with sodium, achieving superior contact stability and the formation of Na-Ga alloys at the interface significantly improves electrode-electrolyte contact stability, achieving a high critical current density (CCD) of 0.8 mA cm-2 and a low interfacial impedance of 16 Ω cm2. A quasi-solid-state battery assembled with Na3V2(PO4)3 (NVP) as the cathode demonstrates excellent cycling stability and rate performance, retaining a high discharge capacity of 91 mAh g-1 at 5 C, and maintaining 87% capacity retention after 1000 cycles at 1 C. This work provides new insights into improving electrolyte performance and interfacial engineering through doping strategies, thereby promoting the development of efficient and long-term SSSBs 
650 4 |a Journal Article 
650 4 |a Na‐β″‐Al2O3 
650 4 |a alloy interfaces 
650 4 |a gallium ion doping 
650 4 |a solid‐state electrolytes 
650 4 |a stacking faults 
700 1 |a Niu, Tianhao  |e verfasserin  |4 aut 
700 1 |a Qiao, Xianji  |e verfasserin  |4 aut 
700 1 |a Shen, Yanran  |e verfasserin  |4 aut 
700 1 |a Cai, Guohong  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaoge  |e verfasserin  |4 aut 
700 1 |a Wang, Yonggang  |e verfasserin  |4 aut 
700 1 |a Zhou, Zhipeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Shipeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Zeyue  |e verfasserin  |4 aut 
700 1 |a Li, Guobao  |e verfasserin  |4 aut 
700 1 |a Cai, Guanqun  |e verfasserin  |4 aut 
700 1 |a Sun, Junliang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 41 vom: 17. Okt., Seite e03562  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:41  |g day:17  |g month:10  |g pages:e03562 
856 4 0 |u http://dx.doi.org/10.1002/adma.202503562  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 41  |b 17  |c 10  |h e03562