Atomistic Mechanisms of the Crystallographic Orientation-Dependent Cu1.8S Conductive Channel Formation in Cu2S-Based Memristors

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 32 vom: 24. Aug., Seite e2501300
1. Verfasser: Li, Xing (VerfasserIn)
Weitere Verfasser: Yan, Weiwei, Wang, Dongyang, Huang, Wentao, Guo, Ying, Gu, Lin, Cheng, Shaobo, Shan, Chongxin, Zhu, Yimei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article copper sulfide electrically triggered phase transitions in situ TEM resistive switching strain
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Achieving multiple types of resistive switching in a single material with controlled ionic motion is a key challenge in neuromorphic computing, traditionally addressed by combining materials with distinct switching behaviors. Here, Cu2-xS is identified as a promising candidate to overcome this limitation due to its hierarchical phase transitions. Using in situ biasing experiments, reversible and non-reversible phase transitions (and resistive switching) are demonstrated in γ-Cu2S by controlling the compliance current. The formation of parallel high-digenite Cu1.8S channels, orientated along the γ-Cu2S [201] crystallographic direction, drives the nonvolatile resistive switching. These channels emerge via an intermediate δ-Cu2S phase and are stabilized at room temperature by residual strains, alongside β-Cu2S phase. The work clarifies the complex, electrically triggered phase transformations in γ-Cu2S, and highlights the potential of Cu2-xS as a versatile material for neuromorphic computing
Beschreibung:Date Revised 15.08.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202501300