Overlap junctions for high coherence superconducting qubits

Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters. - 1998. - 111(2017), 3 vom: 12. Juli
1. Verfasser: Wu, X (VerfasserIn)
Weitere Verfasser: Long, J L, Ku, H S, Lake, R E, Bal, M, Pappas, D P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Applied physics letters
Schlagworte:Journal Article 03.67.Lx
LEADER 01000caa a22002652c 4500
001 NLM38549548X
003 DE-627
005 20250509065402.0
007 cr uuu---uuuuu
008 250508s2017 xx |||||o 00| ||eng c
024 7 |a 10.1063/1.4993937  |2 doi 
028 5 2 |a pubmed25n1343.xml 
035 |a (DE-627)NLM38549548X 
035 |a (NLM)40070949 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, X  |e verfasserin  |4 aut 
245 1 0 |a Overlap junctions for high coherence superconducting qubits 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.03.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ with Ar milling before the junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed 
650 4 |a Journal Article 
650 4 |a 03.67.Lx 
700 1 |a Long, J L  |e verfasserin  |4 aut 
700 1 |a Ku, H S  |e verfasserin  |4 aut 
700 1 |a Lake, R E  |e verfasserin  |4 aut 
700 1 |a Bal, M  |e verfasserin  |4 aut 
700 1 |a Pappas, D P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Applied physics letters  |d 1998  |g 111(2017), 3 vom: 12. Juli  |w (DE-627)NLM098165984  |x 0003-6951  |7 nnas 
773 1 8 |g volume:111  |g year:2017  |g number:3  |g day:12  |g month:07 
856 4 0 |u http://dx.doi.org/10.1063/1.4993937  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 111  |j 2017  |e 3  |b 12  |c 07