Latent Weight Quantization for Integerized Training of Deep Neural Networks
Existing methods for integerized training speed up deep learning by using low-bitwidth integerized weights, activations, gradients, and optimizer buffers. However, they overlook the issue of full-precision latent weights, which consume excessive memory to accumulate gradient-based updates for optimi...
Description complète
Détails bibliographiques
| Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 4 vom: 15. Apr., Seite 2816-2832
|
| Auteur principal: |
Fei, Wen
(Auteur) |
| Autres auteurs: |
Dai, Wenrui,
Zhang, Liang,
Zhang, Luoming,
Li, Chenglin,
Zou, Junni,
Xiong, Hongkai |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2025
|
| Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
| Sujets: | Journal Article |