Latent Weight Quantization for Integerized Training of Deep Neural Networks

Existing methods for integerized training speed up deep learning by using low-bitwidth integerized weights, activations, gradients, and optimizer buffers. However, they overlook the issue of full-precision latent weights, which consume excessive memory to accumulate gradient-based updates for optimi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 4 vom: 15. Apr., Seite 2816-2832
Auteur principal: Fei, Wen (Auteur)
Autres auteurs: Dai, Wenrui, Zhang, Liang, Zhang, Luoming, Li, Chenglin, Zou, Junni, Xiong, Hongkai
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article