Latent Weight Quantization for Integerized Training of Deep Neural Networks

Existing methods for integerized training speed up deep learning by using low-bitwidth integerized weights, activations, gradients, and optimizer buffers. However, they overlook the issue of full-precision latent weights, which consume excessive memory to accumulate gradient-based updates for optimi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 4 vom: 15. Apr., Seite 2816-2832
1. Verfasser: Fei, Wen (VerfasserIn)
Weitere Verfasser: Dai, Wenrui, Zhang, Liang, Zhang, Luoming, Li, Chenglin, Zou, Junni, Xiong, Hongkai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM385073151
003 DE-627
005 20250508065330.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3527498  |2 doi 
028 5 2 |a pubmed25n1337.xml 
035 |a (DE-627)NLM385073151 
035 |a (NLM)40030978 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fei, Wen  |e verfasserin  |4 aut 
245 1 0 |a Latent Weight Quantization for Integerized Training of Deep Neural Networks 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing methods for integerized training speed up deep learning by using low-bitwidth integerized weights, activations, gradients, and optimizer buffers. However, they overlook the issue of full-precision latent weights, which consume excessive memory to accumulate gradient-based updates for optimizing the integerized weights. In this paper, we propose the first latent weight quantization schema for general integerized training, which minimizes quantization perturbation to training process via residual quantization with optimized dual quantizer. We leverage residual quantization to eliminate the correlation between latent weight and integerized weight for suppressing quantization noise. We further propose dual quantizer with optimal nonuniform codebook to avoid frozen weight and ensure statistically unbiased training trajectory as full-precision latent weight. The codebook is optimized to minimize the disturbance on weight update under importance guidance and achieved with a three-segment polyline approximation for hardware-friendly implementation. Extensive experiments show that the proposed schema allows integerized training with lowest 4-bit latent weight for various architectures including ResNets, MobileNetV2, and Transformers, and yields negligible performance loss in image classification and text generation. Furthermore, we successfully fine-tune Large Language Models with up to 13 billion parameters on one single GPU using the proposed schema 
650 4 |a Journal Article 
700 1 |a Dai, Wenrui  |e verfasserin  |4 aut 
700 1 |a Zhang, Liang  |e verfasserin  |4 aut 
700 1 |a Zhang, Luoming  |e verfasserin  |4 aut 
700 1 |a Li, Chenglin  |e verfasserin  |4 aut 
700 1 |a Zou, Junni  |e verfasserin  |4 aut 
700 1 |a Xiong, Hongkai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 4 vom: 15. Apr., Seite 2816-2832  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:4  |g day:15  |g month:04  |g pages:2816-2832 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3527498  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 4  |b 15  |c 04  |h 2816-2832