Latent Weight Quantization for Integerized Training of Deep Neural Networks

Existing methods for integerized training speed up deep learning by using low-bitwidth integerized weights, activations, gradients, and optimizer buffers. However, they overlook the issue of full-precision latent weights, which consume excessive memory to accumulate gradient-based updates for optimi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 4 vom: 15. Apr., Seite 2816-2832
1. Verfasser: Fei, Wen (VerfasserIn)
Weitere Verfasser: Dai, Wenrui, Zhang, Liang, Zhang, Luoming, Li, Chenglin, Zou, Junni, Xiong, Hongkai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article