Hybrid-Prediction Integrated Planning for Autonomous Driving

Autonomous driving systems require a comprehensive understanding and accurate prediction of the surrounding environment to facilitate informed decision-making in complex scenarios. Recent advances in learning-based systems have highlighted the importance of integrating prediction and planning. Howev...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 4 vom: 15. Apr., Seite 2597-2614
1. Verfasser: Liu, Haochen (VerfasserIn)
Weitere Verfasser: Huang, Zhiyu, Huang, Wenhui, Yang, Haohan, Mo, Xiaoyu, Lv, Chen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM385073135
003 DE-627
005 20250508065330.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3526936  |2 doi 
028 5 2 |a pubmed25n1337.xml 
035 |a (DE-627)NLM385073135 
035 |a (NLM)40030982 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Haochen  |e verfasserin  |4 aut 
245 1 0 |a Hybrid-Prediction Integrated Planning for Autonomous Driving 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Autonomous driving systems require a comprehensive understanding and accurate prediction of the surrounding environment to facilitate informed decision-making in complex scenarios. Recent advances in learning-based systems have highlighted the importance of integrating prediction and planning. However, this integration poses significant alignment challenges through consistency between prediction patterns, to interaction between future prediction and planning. To address these challenges, we introduce a Hybrid-Prediction integrated Planning (HPP) framework, which operates through three novel modules collaboratively. First, we introduce marginal-conditioned occupancy prediction to align joint occupancy with agent-specific motion forecasting. Our proposed MS-OccFormer module achieves spatial-temporal alignment with motion predictions across multiple granularities. Second, we propose a game-theoretic motion predictor, GTFormer, to model the interactive dynamics among agents based on their joint predictive awareness. Third, hybrid prediction patterns are concurrently integrated into the Ego Planner and optimized by prediction guidance. The HPP framework establishes state-of-the-art performance on the nuScenes dataset, demonstrating superior accuracy and safety in end-to-end configurations. Moreover, HPP's interactive open-loop and closed-loop planning performance are demonstrated on the Waymo Open Motion Dataset (WOMD) and CARLA benchmark, outperforming existing integrated pipelines by achieving enhanced consistency between prediction and planning 
650 4 |a Journal Article 
700 1 |a Huang, Zhiyu  |e verfasserin  |4 aut 
700 1 |a Huang, Wenhui  |e verfasserin  |4 aut 
700 1 |a Yang, Haohan  |e verfasserin  |4 aut 
700 1 |a Mo, Xiaoyu  |e verfasserin  |4 aut 
700 1 |a Lv, Chen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 4 vom: 15. Apr., Seite 2597-2614  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:4  |g day:15  |g month:04  |g pages:2597-2614 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3526936  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 4  |b 15  |c 04  |h 2597-2614