Superstrong Lightweight Aerogel with Supercontinuous Layer by Surface Reaction

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 10 vom: 03. März, Seite e2418083
1. Verfasser: Zhou, Tianpei (VerfasserIn)
Weitere Verfasser: He, Linbo, Zhen, Yu, Tai, Xiaolin, Dai, Shun, Wu, Kaijin, Ding, Honghe, Xia, Tianpu, Zhang, Xun, Cai, Xueru, Jiang, Fangzhou, Zhu, Zhiqiang, Huang, Fangsheng, Li, Chen, Li, Yaping, Zhu, Junfa, Chu, Wangsheng, Lin, Yue, Ni, Yong, Xie, Yi, Wu, Changzheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article aerogel supercontinuous layer superstrong and ultralight surface chemistry reaction thermal insulation
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Breaking the thermal, mechanical and lightweight performance limit of aerogels has pivotal significance on thermal protection, new energy utilization, high-temperature catalysis, structural engineering, and physics, but is severely limited by the serious discrete characteristics between grain boundary and nano-units interfaces. Herein, a thermodynamically driven surface reaction and confined crystallization process is reported to synthesize a centimeter-scale supercontinuous ZrO2 nanolayer on ZrO2-SiO2 fiber aerogel surface, which significantly improved its thermal and mechanical properties with density almost unchanged (≈26 mg cm-3). Systematic structure analysis confirms that the supercontinuous layer achieves a close connection between grains and fibers through Zr─O─Si bonds. The as-prepared aerogel exhibits record-breaking specific strength (≈84615 N m kg-1, can support up to ≈227 272 times aerogel mass) and dynamic impact resistance (withstanding impacts up to 500 times aerogel mass and up to 200 cycling stability at 80% strain). Besides, its temperature resistance has also been greatly optimized (400 °C enhancement, stability at 1500 °C). This work will provide a new perspective for exploring the limits of lightweight, high strength, and thermal properties of solid materials
Beschreibung:Date Revised 12.03.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202418083