Machine Learning Prediction of Physicochemical Properties in Lithium-Ion Battery Electrolytes With Active Learning Applied to Graph Neural Networks

© 2024 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 46(2024), 1 vom: 05. Jan., Seite e70009
1. Verfasser: Das, Debojyoti (VerfasserIn)
Weitere Verfasser: Chakraborty, Debdutta
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article SHAP analysis active learning energy predictions graph neural networks li‐ion battery electrolytes
LEADER 01000naa a22002652 4500
001 NLM382094506
003 DE-627
005 20241227232721.0
007 cr uuu---uuuuu
008 241227s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.70009  |2 doi 
028 5 2 |a pubmed24n1643.xml 
035 |a (DE-627)NLM382094506 
035 |a (NLM)39723474 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Das, Debojyoti  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning Prediction of Physicochemical Properties in Lithium-Ion Battery Electrolytes With Active Learning Applied to Graph Neural Networks 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.12.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley Periodicals LLC. 
520 |a Accurate prediction of physicochemical properties, such as electronic energy, enthalpy, free energy, and average vibrational frequencies, is critical for optimizing lithium-ion battery (LIB) performance. Traditional methods like density functional theory (DFT) are computationally expensive and inefficient for large-scale screening. In this study, we apply active learning on top of graph neural networks (GNNs) to efficiently predict these properties. By focusing on uncertain data points, active learning reduces training data size while maintaining high accuracy. Applied to the LIBE and MPcules datasets, the model achieved an R-squared (R2) values of 0.9977 with a mean absolute error (MAE) of 9.66 Ha for electronic energy and an R2 values of 0.957 with an MAE of 13.94 cm-1 for average vibrational frequencies. SHapley Additive exPlanations (SHAP) provided insights into key features influencing predictions, such as atomic number and spin multiplicity. This approach enhances both predictive accuracy and model interpretability, offering a scalable solution for LIB electrolyte discovery 
650 4 |a Journal Article 
650 4 |a SHAP analysis 
650 4 |a active learning 
650 4 |a energy predictions 
650 4 |a graph neural networks 
650 4 |a li‐ion battery electrolytes 
700 1 |a Chakraborty, Debdutta  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 46(2024), 1 vom: 05. Jan., Seite e70009  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:1  |g day:05  |g month:01  |g pages:e70009 
856 4 0 |u http://dx.doi.org/10.1002/jcc.70009  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 1  |b 05  |c 01  |h e70009