Machine Learning Prediction of Physicochemical Properties in Lithium-Ion Battery Electrolytes With Active Learning Applied to Graph Neural Networks

© 2024 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 46(2024), 1 vom: 05. Jan., Seite e70009
1. Verfasser: Das, Debojyoti (VerfasserIn)
Weitere Verfasser: Chakraborty, Debdutta
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article SHAP analysis active learning energy predictions graph neural networks li‐ion battery electrolytes
Beschreibung
Zusammenfassung:© 2024 Wiley Periodicals LLC.
Accurate prediction of physicochemical properties, such as electronic energy, enthalpy, free energy, and average vibrational frequencies, is critical for optimizing lithium-ion battery (LIB) performance. Traditional methods like density functional theory (DFT) are computationally expensive and inefficient for large-scale screening. In this study, we apply active learning on top of graph neural networks (GNNs) to efficiently predict these properties. By focusing on uncertain data points, active learning reduces training data size while maintaining high accuracy. Applied to the LIBE and MPcules datasets, the model achieved an R-squared (R2) values of 0.9977 with a mean absolute error (MAE) of 9.66 Ha for electronic energy and an R2 values of 0.957 with an MAE of 13.94 cm-1 for average vibrational frequencies. SHapley Additive exPlanations (SHAP) provided insights into key features influencing predictions, such as atomic number and spin multiplicity. This approach enhances both predictive accuracy and model interpretability, offering a scalable solution for LIB electrolyte discovery
Beschreibung:Date Revised 26.12.2024
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.70009