Machine Learning in Solid-State Hydrogen Storage Materials : Challenges and Perspectives

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 20. Dez., Seite e2413430
1. Verfasser: Zhou, Panpan (VerfasserIn)
Weitere Verfasser: Zhou, Qianwen, Xiao, Xuezhang, Fan, Xiulin, Zou, Yongjin, Sun, Lixian, Jiang, Jinghua, Song, Dan, Chen, Lixin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review high‐throughput material design hydrogen storage materials machine learning mechanism mining
LEADER 01000naa a22002652 4500
001 NLM38189116X
003 DE-627
005 20241220233247.0
007 cr uuu---uuuuu
008 241220s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202413430  |2 doi 
028 5 2 |a pubmed24n1637.xml 
035 |a (DE-627)NLM38189116X 
035 |a (NLM)39703108 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Panpan  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning in Solid-State Hydrogen Storage Materials  |b Challenges and Perspectives 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Machine learning (ML) has emerged as a pioneering tool in advancing the research application of high-performance solid-state hydrogen storage materials (HSMs). This review summarizes the state-of-the-art research of ML in resolving crucial issues such as low hydrogen storage capacity and unfavorable de-/hydrogenation cycling conditions. First, the datasets, feature descriptors, and prevalent ML models tailored for HSMs are described. Specific examples include the successful application of ML in titanium-based, rare-earth-based, solid solution, magnesium-based, and complex HSMs, showcasing its role in exploiting composition-structure-property relationships and designing novel HSMs for specific applications. One of the representative ML works is the single-phase Ti-based HSM with superior cost-effective and comprehensive properties, tailored to fuel cell hydrogen feeding system at ambient temperature and pressure through high-throughput composition-performance scanning. More importantly, this review also identifies and critically analyzes the key challenges faced by ML in this domain, including poor data quality and availability, and the balance between model interpretability and accuracy, together with feasible countermeasures suggested to ameliorate these problems. In summary, this work outlines a roadmap for enhancing ML's utilization in solid-state hydrogen storage research, promoting more efficient and sustainable energy storage solutions 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a high‐throughput material design 
650 4 |a hydrogen storage materials 
650 4 |a machine learning 
650 4 |a mechanism mining 
700 1 |a Zhou, Qianwen  |e verfasserin  |4 aut 
700 1 |a Xiao, Xuezhang  |e verfasserin  |4 aut 
700 1 |a Fan, Xiulin  |e verfasserin  |4 aut 
700 1 |a Zou, Yongjin  |e verfasserin  |4 aut 
700 1 |a Sun, Lixian  |e verfasserin  |4 aut 
700 1 |a Jiang, Jinghua  |e verfasserin  |4 aut 
700 1 |a Song, Dan  |e verfasserin  |4 aut 
700 1 |a Chen, Lixin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 20. Dez., Seite e2413430  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:20  |g month:12  |g pages:e2413430 
856 4 0 |u http://dx.doi.org/10.1002/adma.202413430  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 20  |c 12  |h e2413430