Self-Selective (220) Directional Grown Copper Current Collector Design for Cycling-Stable Anode-Less Lithium Metal Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 15. Dez., Seite e2413420
1. Verfasser: Zhan, Jun (VerfasserIn)
Weitere Verfasser: Deng, Lequan, Liu, Yaoyao, Hao, Mengjiao, Wang, Zhaofen, Dong, Lu-Tan, Yang, Yushuang, Song, Kepeng, Qi, Dongqing, Wang, Jianjun, Wang, Shuhua, Liu, Hong, Zhou, Weijia, Chen, Hao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li salt adsorption and decomposition anode‐less lithium metal batteries inorganic solid electrolyte interphase self‐selective and inorganic interphase‐catalyzing current collector design
LEADER 01000naa a22002652 4500
001 NLM381624773
003 DE-627
005 20241216232605.0
007 cr uuu---uuuuu
008 241216s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202413420  |2 doi 
028 5 2 |a pubmed24n1633.xml 
035 |a (DE-627)NLM381624773 
035 |a (NLM)39676390 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhan, Jun  |e verfasserin  |4 aut 
245 1 0 |a Self-Selective (220) Directional Grown Copper Current Collector Design for Cycling-Stable Anode-Less Lithium Metal Batteries 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Anode-less lithium metal batteries (ALLMB) are promising candidates for energy storage applications owing to high-energy-density and safety characteristics. However, the unstable solid electrolyte interphase (SEI) formed on anode copper current collector (CuCC) leads to poor reversibility of uneven lithium deposition/stripping. Though the well-known knowledge of lithium salt-derived inorganic-rich SEI (iSEI) benefiting uniform lithium deposition, how to design a lithium salt-philic CuCC with undiscovered salt-philic facet that favors lithium salt adsorption and catalyzing salt decomposition into iSEI, remains unexplored yet. Here, a self-selective and iSEI-catalyzing CuCC design is developed by using lithium salt as surface-controlling agent in CuCC electrodeposition process, self-selecting out and guiding unidirectional Cu(220) facet growth as the most salt-philic facets of CuCC. This self-selected Cu(220) facet promotes the salt adsorption and formation of salt decomposition-derived iSEI in battery, thus improving the lithium plating/stripping coulombic efficiency from 99.25% to 99.50% (stable within 400 cycles), and the capacity decay rate of ALLMB is also reduced by 42.4% within 100 cycles. Practical mass-productivity of this self-selective CuCC for 350 Wh kg-1 pouch-cell fabrication is also demonstrated, providing a new self-selective current collector design strategy for improving selectivity and catalyzation of desired chemical reaction, important for high-selectivity electrochemical reaction system construction 
650 4 |a Journal Article 
650 4 |a Li salt adsorption and decomposition 
650 4 |a anode‐less lithium metal batteries 
650 4 |a inorganic solid electrolyte interphase 
650 4 |a self‐selective and inorganic interphase‐catalyzing current collector design 
700 1 |a Deng, Lequan  |e verfasserin  |4 aut 
700 1 |a Liu, Yaoyao  |e verfasserin  |4 aut 
700 1 |a Hao, Mengjiao  |e verfasserin  |4 aut 
700 1 |a Wang, Zhaofen  |e verfasserin  |4 aut 
700 1 |a Dong, Lu-Tan  |e verfasserin  |4 aut 
700 1 |a Yang, Yushuang  |e verfasserin  |4 aut 
700 1 |a Song, Kepeng  |e verfasserin  |4 aut 
700 1 |a Qi, Dongqing  |e verfasserin  |4 aut 
700 1 |a Wang, Jianjun  |e verfasserin  |4 aut 
700 1 |a Wang, Shuhua  |e verfasserin  |4 aut 
700 1 |a Liu, Hong  |e verfasserin  |4 aut 
700 1 |a Zhou, Weijia  |e verfasserin  |4 aut 
700 1 |a Chen, Hao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 15. Dez., Seite e2413420  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:15  |g month:12  |g pages:e2413420 
856 4 0 |u http://dx.doi.org/10.1002/adma.202413420  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 15  |c 12  |h e2413420