Cellulose Nanofiber-Supported Electrochemical Percolation of Capacitive Nanomaterials with 0D, 1D, and 2D Structures

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 27. Nov., Seite e2414904
1. Verfasser: Hang, Chen-Chen (VerfasserIn)
Weitere Verfasser: Zhang, Chao, Guan, Qing-Fang, Ye, Liqing, Su, Yude, Yu, Shu-Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cellulose nanofiber dimensionality electrochemical percolation energy‐storage nanomaterials insulator‐supported supercapacitor
LEADER 01000naa a22002652 4500
001 NLM380875403
003 DE-627
005 20241128000123.0
007 cr uuu---uuuuu
008 241128s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202414904  |2 doi 
028 5 2 |a pubmed24n1615.xml 
035 |a (DE-627)NLM380875403 
035 |a (NLM)39601230 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hang, Chen-Chen  |e verfasserin  |4 aut 
245 1 0 |a Cellulose Nanofiber-Supported Electrochemical Percolation of Capacitive Nanomaterials with 0D, 1D, and 2D Structures 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Cellulose nanofiber (CNF) represents a promising support material to strengthen the mechanical property of free-standing supercapacitor electrodes comprised of conducting nanomaterials. Although efforts have been focused on improving the performance of the CNF-supported electrode, the percolation of capacitive nanomaterials within the insulating CNF matrix, and its correlation with the nanomaterial's dimensionality are still underexplored. In this work, membrane supercapacitor electrodes are fabricated by incorporating CNF with 0D, 1D, and 2D capacitive nanocarbons respectively to study the impact of their dimensionality. It is found that the percolation pathway of the nanocarbons is dependent on their dimensionality. By introducing a new definition termed as electrochemical percolation threshold, the threshold weight percentages to realize effective electrochemical percolation are determined to be 60.0, 14.3, and 66.7% for 0D, 1D, and 2D nanocarbons, respectively. Increasing the weight percentage beyond the threshold typically results in improved electrochemical percolation but reduced mechanical strength, and both trends are dependent on the nanocarbon's dimensionality. The results provide guidance to design efficient and robust CNF-supported supercapacitor electrodes by controlling the dimensionality and density of the active material. The insights regarding the electrochemical percolation threshold can be applied to other energy-storage nanomaterials to advance the development of insulator-supported supercapacitors 
650 4 |a Journal Article 
650 4 |a cellulose nanofiber 
650 4 |a dimensionality 
650 4 |a electrochemical percolation 
650 4 |a energy‐storage nanomaterials 
650 4 |a insulator‐supported supercapacitor 
700 1 |a Zhang, Chao  |e verfasserin  |4 aut 
700 1 |a Guan, Qing-Fang  |e verfasserin  |4 aut 
700 1 |a Ye, Liqing  |e verfasserin  |4 aut 
700 1 |a Su, Yude  |e verfasserin  |4 aut 
700 1 |a Yu, Shu-Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 27. Nov., Seite e2414904  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:27  |g month:11  |g pages:e2414904 
856 4 0 |u http://dx.doi.org/10.1002/adma.202414904  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 27  |c 11  |h e2414904