Self-Trapped Excitons in 3R ZnIn2S4 with Broken Inversion Symmetry for High-Performance Photodetection
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 06. Nov., Seite e2410417 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 3R‐ZnIn2S4 broken inversion symmetry photodetection self‐trapped excitons |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Exploring novel materials with intrinsic self-trapped excitons (STEs) is crucial for advancing optoelectronic technologies. In this study, 2D 3R-phase ZnIn2S4, featuring broken inversion symmetry, is introduced to investigate intrinsic STEs. This material exhibits a broadband photoluminescence (PL) emission with a full width at half maximum of 164 nm and a large Stokes shift of ≈0.6 eV, which arises from the distortion of [ZnS4]6- tetrahedral unit induced by the symmetry breaking and strong electron-phonon coupling. The photophysical properties of the STEs exhibit a high Huang-Rhys factor (15.0), rapid STEs formation time (166 fs), and extended STEs lifetime (1039 ps), as demonstrated by experimental evidence from temperature-dependent PL, Raman spectroscopy, and ultrafast absorption spectroscopy. Additionally, STE-induced photoconductive effect is elucidated, indicating that intrinsic STEs in 3R-ZnIn2S4 can provide a synergistic effect that enhances absorption capacity, localization, and lifetime by capturing the self-trapped hole state. Consequently, the 2D 3R-ZnIn2S4 photodetector exhibits remarkable broad-spectrum photosensitivity, including a photo-switching ratio of 11286, response times of less than 0.6 ms, responsivity of 15.2 A W-1, detectivity of 1.02 × 10¹¹ Jones, and external quantum efficiency of 5032% under 375 nm light. These findings provide new ideas for exploring materials with intrinsic STEs to achieve novel high-performance photodetector applications |
---|---|
Beschreibung: | Date Revised 07.11.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202410417 |