Cyclodextrin Metal-Organic Framework Functionalized Carbon Materials with Optimized Interface Electronics and Selective Supramolecular Channels for High-Performance Lithium-Sulfur Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 52 vom: 01. Dez., Seite e2415633
1. Verfasser: Sun, Bingxin (VerfasserIn)
Weitere Verfasser: Wang, Dan, Jiang, Yuxuan, Wang, Rui, Lyu, Lulu, Diao, Guowang, Zhang, Wang, Pang, Huan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cyclodextrin metal–organic framework interface electron interaction lithium–sulfur batteries sulfur reduction kinetics supramolecular microenvironment
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
During the reaction process in lithium-sulfur batteries, Lewis acidic lithium polysulfides (LiPSs) affect ion distribution and overall electrolyte stability, degrading battery performance and product distribution (e.g., Li2S). Here, a microenvironment regulation strategy with optimized interface electronics and selective supramolecular channels, is proposed to enhance LiPS reaction kinetics through Lewis basic γ-cyclodextrin metal-organic framework (γ-CDMOF). To validate this concept, γ-CDMOF is rapidly synthesized on 3D graphene foam (GF) via a microwave-assisted method, resulting in a γ-CDMOF/GF cathode for high-performance Li-S batteries. A range of analytical techniques combined with density functional theory (DFT) calculations confirm that introducing a Lewis basic supramolecular microenvironment mitigates the LiPSs shuttle effect, enhances polysulfide capture, and improves sulfur redox conversion. Additionally, COMSOL simulations reveal that the γ-CDMOF framework and oxygen sites significantly reduce volumetric expansion stress during the LiPS solid-liquid phase transition. Impressively, the γ-CDMOF/GF cathode exhibits exceptional performance, including a high specific capacity (1253.01 mAh g⁻¹ at 0.1C), excellent rate performance (589.68 mAh g⁻¹ at 5C), and long cycle life (over 1200 cycles). This study introduces a new concept of supramolecular microenvironment regulation and interfacial interaction strategy, offering a unique approach for the development of multifunctional electrode materials
Beschreibung:Date Revised 28.12.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202415633