The impact of misclassifications and outliers on imputation methods

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 14 vom: 23., Seite 2894-2928
1. Verfasser: Templ, M (VerfasserIn)
Weitere Verfasser: Ulmer, Markus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62-08 Missing values imputation misclassifications outliers robust methods simulation
LEADER 01000caa a22002652 4500
001 NLM379367653
003 DE-627
005 20241026232435.0
007 cr uuu---uuuuu
008 241025s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2024.2325969  |2 doi 
028 5 2 |a pubmed24n1581.xml 
035 |a (DE-627)NLM379367653 
035 |a (NLM)39450101 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Templ, M  |e verfasserin  |4 aut 
245 1 4 |a The impact of misclassifications and outliers on imputation methods 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.10.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Many imputation methods have been developed over the years and tested mostly under ideal settings. Surprisingly, there is no detailed research on how imputation methods perform when the idealized assumptions about the distribution of data and/or model assumptions are partly not fulfilled. This research looks into the susceptibility of imputation techniques, particularly in relation to outliers, misclassifications, and incorrect model specifications. This is crucial knowledge about how well the methods convince in everyday life because, in reality, conditions are usually not ideal, and model assumptions may not hold. The data may not fit the defined models well. Outliers distort the estimates, and misclassifications reduce the quality of most imputation methods. Several different evaluation measures are discussed, from comparing imputed values with true values or comparing certain statistics, from the performance of classifiers to the variance of estimated parameters. Some well-known imputation methods are compared based on real data and simulations. It turns out that robust conditional imputation methods outperform other methods for real data and simulation settings 
650 4 |a Journal Article 
650 4 |a 62-08 
650 4 |a Missing values 
650 4 |a imputation 
650 4 |a misclassifications 
650 4 |a outliers 
650 4 |a robust methods 
650 4 |a simulation 
700 1 |a Ulmer, Markus  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 14 vom: 23., Seite 2894-2928  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:14  |g day:23  |g pages:2894-2928 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2024.2325969  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 14  |b 23  |h 2894-2928