The impact of misclassifications and outliers on imputation methods

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 14 vom: 23., Seite 2894-2928
1. Verfasser: Templ, M (VerfasserIn)
Weitere Verfasser: Ulmer, Markus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62-08 Missing values imputation misclassifications outliers robust methods simulation
Beschreibung
Zusammenfassung:© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Many imputation methods have been developed over the years and tested mostly under ideal settings. Surprisingly, there is no detailed research on how imputation methods perform when the idealized assumptions about the distribution of data and/or model assumptions are partly not fulfilled. This research looks into the susceptibility of imputation techniques, particularly in relation to outliers, misclassifications, and incorrect model specifications. This is crucial knowledge about how well the methods convince in everyday life because, in reality, conditions are usually not ideal, and model assumptions may not hold. The data may not fit the defined models well. Outliers distort the estimates, and misclassifications reduce the quality of most imputation methods. Several different evaluation measures are discussed, from comparing imputed values with true values or comparing certain statistics, from the performance of classifiers to the variance of estimated parameters. Some well-known imputation methods are compared based on real data and simulations. It turns out that robust conditional imputation methods outperform other methods for real data and simulation settings
Beschreibung:Date Revised 26.10.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2024.2325969