Toward Blind Flare Removal Using Knowledge-Driven Flare-Level Estimator

Lens flare is a common phenomenon when strong light rays arrive at the camera sensor and a clean scene is consequently mixed up with various opaque and semi-transparent artifacts. Existing deep learning methods are always constrained with limited real image pairs for training. Though recent synthesi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 22., Seite 6114-6128
1. Verfasser: Deng, Haoyou (VerfasserIn)
Weitere Verfasser: Li, Lida, Zhang, Feng, Li, Zhiqiang, Xu, Bin, Lu, Qingbo, Gao, Changxin, Sang, Nong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM379240114
003 DE-627
005 20241029232533.0
007 cr uuu---uuuuu
008 241024s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3480696  |2 doi 
028 5 2 |a pubmed24n1584.xml 
035 |a (DE-627)NLM379240114 
035 |a (NLM)39437280 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Deng, Haoyou  |e verfasserin  |4 aut 
245 1 0 |a Toward Blind Flare Removal Using Knowledge-Driven Flare-Level Estimator 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Lens flare is a common phenomenon when strong light rays arrive at the camera sensor and a clean scene is consequently mixed up with various opaque and semi-transparent artifacts. Existing deep learning methods are always constrained with limited real image pairs for training. Though recent synthesis-based approaches are found effective, synthesized pairs still deviate from the real ones as the mixing mechanism of flare artifacts and scenes in the wild always depends on a line of undetermined factors, such as lens structure, scratches, etc. In this paper, we present a new perspective from the blind nature of the flare removal task in a knowledge-driven manner. Specifically, we present a simple yet effective flare-level estimator to predict the corruption level of a flare-corrupted image. The estimated flare-level can be interpreted as additive information of the gap between corrupted images and their flare-free correspondences to facilitate a network at both training and testing stages adaptively. Besides, we utilize a flare-level modulator to better integrate the estimations into networks. We also devise a flare-aware block for more accurate flare recognition and reconstruction. Additionally, we collect a new real-world flare dataset for benchmarking, namely WiderFlare. Extensive experiments on three benchmark datasets demonstrate that our method outperforms state-of-the-art methods quantitatively and qualitatively 
650 4 |a Journal Article 
700 1 |a Li, Lida  |e verfasserin  |4 aut 
700 1 |a Zhang, Feng  |e verfasserin  |4 aut 
700 1 |a Li, Zhiqiang  |e verfasserin  |4 aut 
700 1 |a Xu, Bin  |e verfasserin  |4 aut 
700 1 |a Lu, Qingbo  |e verfasserin  |4 aut 
700 1 |a Gao, Changxin  |e verfasserin  |4 aut 
700 1 |a Sang, Nong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 22., Seite 6114-6128  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:22  |g pages:6114-6128 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3480696  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 22  |h 6114-6128