Toward Blind Flare Removal Using Knowledge-Driven Flare-Level Estimator

Lens flare is a common phenomenon when strong light rays arrive at the camera sensor and a clean scene is consequently mixed up with various opaque and semi-transparent artifacts. Existing deep learning methods are always constrained with limited real image pairs for training. Though recent synthesi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 22., Seite 6114-6128
1. Verfasser: Deng, Haoyou (VerfasserIn)
Weitere Verfasser: Li, Lida, Zhang, Feng, Li, Zhiqiang, Xu, Bin, Lu, Qingbo, Gao, Changxin, Sang, Nong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Lens flare is a common phenomenon when strong light rays arrive at the camera sensor and a clean scene is consequently mixed up with various opaque and semi-transparent artifacts. Existing deep learning methods are always constrained with limited real image pairs for training. Though recent synthesis-based approaches are found effective, synthesized pairs still deviate from the real ones as the mixing mechanism of flare artifacts and scenes in the wild always depends on a line of undetermined factors, such as lens structure, scratches, etc. In this paper, we present a new perspective from the blind nature of the flare removal task in a knowledge-driven manner. Specifically, we present a simple yet effective flare-level estimator to predict the corruption level of a flare-corrupted image. The estimated flare-level can be interpreted as additive information of the gap between corrupted images and their flare-free correspondences to facilitate a network at both training and testing stages adaptively. Besides, we utilize a flare-level modulator to better integrate the estimations into networks. We also devise a flare-aware block for more accurate flare recognition and reconstruction. Additionally, we collect a new real-world flare dataset for benchmarking, namely WiderFlare. Extensive experiments on three benchmark datasets demonstrate that our method outperforms state-of-the-art methods quantitatively and qualitatively
Beschreibung:Date Revised 28.10.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3480696