Automated Classification of Coronary Plaque on Intravascular Ultrasound by Deep Classifier Cascades

Intravascular ultrasound (IVUS) is the gold standard modality for in vivo visualization of coronary arteries and atherosclerotic plaques. Classification of coronary plaques helps to characterize heterogeneous components and evaluate the risk of plaque rupture. Manual classification is time-consuming...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - PP(2024) vom: 10. Okt.
1. Verfasser: Yang, Jing (VerfasserIn)
Weitere Verfasser: Li, Xinze, Guo, Yunbo, Song, Peng, Lv, Tiantian, Zhang, Yingmei, Cui, Yaoyao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM378739956
003 DE-627
005 20241011232848.0
007 cr uuu---uuuuu
008 241011s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2024.3475033  |2 doi 
028 5 2 |a pubmed24n1564.xml 
035 |a (DE-627)NLM378739956 
035 |a (NLM)39388332 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Jing  |e verfasserin  |4 aut 
245 1 0 |a Automated Classification of Coronary Plaque on Intravascular Ultrasound by Deep Classifier Cascades 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Intravascular ultrasound (IVUS) is the gold standard modality for in vivo visualization of coronary arteries and atherosclerotic plaques. Classification of coronary plaques helps to characterize heterogeneous components and evaluate the risk of plaque rupture. Manual classification is time-consuming and labor-intensive. Several machine learning-based classification approaches have been proposed and evaluated in recent years. In the current study, we develop a novel pipeline composed of serial classifiers for distinguishing IVUS images into five categories: normal, calcified plaque, attenuated plaque, fibrous plaque, and echolucent plaque. The cascades comprise densely connected classification models and machine learning classifiers at different stages. Over 100,000 IVUS frames of five different lesion types were collected and labeled from 471 patients for model training and evaluation. The overall accuracy of the proposed classifier is 0.877, indicating that the proposed framework has the capacity to identify the nature and category of coronary plaques in IVUS images. Further, it may provide real-time assistance on plaque identification and facilitate clinical decision-making in routine practice 
650 4 |a Journal Article 
700 1 |a Li, Xinze  |e verfasserin  |4 aut 
700 1 |a Guo, Yunbo  |e verfasserin  |4 aut 
700 1 |a Song, Peng  |e verfasserin  |4 aut 
700 1 |a Lv, Tiantian  |e verfasserin  |4 aut 
700 1 |a Zhang, Yingmei  |e verfasserin  |4 aut 
700 1 |a Cui, Yaoyao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g PP(2024) vom: 10. Okt.  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:10  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2024.3475033  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 10  |c 10