Automated Classification of Coronary Plaque on Intravascular Ultrasound by Deep Classifier Cascades

Intravascular ultrasound (IVUS) is the gold standard modality for in vivo visualization of coronary arteries and atherosclerotic plaques. Classification of coronary plaques helps to characterize heterogeneous components and evaluate the risk of plaque rupture. Manual classification is time-consuming...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - PP(2024) vom: 10. Okt.
1. Verfasser: Yang, Jing (VerfasserIn)
Weitere Verfasser: Li, Xinze, Guo, Yunbo, Song, Peng, Lv, Tiantian, Zhang, Yingmei, Cui, Yaoyao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Intravascular ultrasound (IVUS) is the gold standard modality for in vivo visualization of coronary arteries and atherosclerotic plaques. Classification of coronary plaques helps to characterize heterogeneous components and evaluate the risk of plaque rupture. Manual classification is time-consuming and labor-intensive. Several machine learning-based classification approaches have been proposed and evaluated in recent years. In the current study, we develop a novel pipeline composed of serial classifiers for distinguishing IVUS images into five categories: normal, calcified plaque, attenuated plaque, fibrous plaque, and echolucent plaque. The cascades comprise densely connected classification models and machine learning classifiers at different stages. Over 100,000 IVUS frames of five different lesion types were collected and labeled from 471 patients for model training and evaluation. The overall accuracy of the proposed classifier is 0.877, indicating that the proposed framework has the capacity to identify the nature and category of coronary plaques in IVUS images. Further, it may provide real-time assistance on plaque identification and facilitate clinical decision-making in routine practice
Beschreibung:Date Revised 10.10.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1525-8955
DOI:10.1109/TUFFC.2024.3475033