|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM378428306 |
003 |
DE-627 |
005 |
20241107232405.0 |
007 |
cr uuu---uuuuu |
008 |
241003s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.20121
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1593.xml
|
035 |
|
|
|a (DE-627)NLM378428306
|
035 |
|
|
|a (NLM)39353606
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Pankasem, Nattiwong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Warming triggers stomatal opening by enhancement of photosynthesis and ensuing guard cell CO2 sensing, whereas higher temperatures induce a photosynthesis-uncoupled response
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.11.2024
|
500 |
|
|
|a Date Revised 07.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.
|
520 |
|
|
|a Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied. We developed an approach for clamping leaf-to-air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming-induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature-sensitive proteins, Phytochrome B (phyB) and EARLY-FLOWERING-3 (ELF3). We confirmed that phot1-5/phot2-1 leaves lacking blue-light photoreceptors showed partially reduced warming-induced stomatal opening. Furthermore, ABA-biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly, Arabidopsis (dicot) and Brachypodium distachyon (monocot) mutants lacking guard cell CO2 sensors and signaling mechanisms, including ht1, mpk12/mpk4-gc, and cbc1/cbc2 abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis. We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2 assimilation and stomatal CO2 sensing. Additionally, increasing heat stress functions via a distinct photosynthesis-uncoupled stomatal opening pathway
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a blue light
|
650 |
|
4 |
|a carbon dioxide
|
650 |
|
4 |
|a guard cell
|
650 |
|
4 |
|a heat
|
650 |
|
4 |
|a heat stress
|
650 |
|
4 |
|a photosynthesis
|
650 |
|
4 |
|a protein kinase
|
650 |
|
4 |
|a stomata
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a Arabidopsis Proteins
|2 NLM
|
650 |
|
7 |
|a Abscisic Acid
|2 NLM
|
650 |
|
7 |
|a 72S9A8J5GW
|2 NLM
|
650 |
|
7 |
|a Phytochrome B
|2 NLM
|
650 |
|
7 |
|a 136250-22-1
|2 NLM
|
700 |
1 |
|
|a Hsu, Po-Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lopez, Bryn N K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Franks, Peter J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Schroeder, Julian I
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 244(2024), 5 vom: 06. Nov., Seite 1847-1863
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:244
|g year:2024
|g number:5
|g day:06
|g month:11
|g pages:1847-1863
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.20121
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 244
|j 2024
|e 5
|b 06
|c 11
|h 1847-1863
|