Transcription factor gene TaWRKY76 confers plants improved drought and salt tolerance through modulating stress defensive-associated processes in Triticum aestivum L

Copyright © 2024. Published by Elsevier Masson SAS.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 216(2024) vom: 22. Nov., Seite 109147
1. Verfasser: Hou, Xiaoyang (VerfasserIn)
Weitere Verfasser: Ma, Chunying, Wang, Ziyi, Shi, Xinxin, Duan, Wanrong, Fu, Xiaoxin, Liu, Jinzhi, Guo, Chengjin, Xiao, Kai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Gene expression Osmotic stress Physiological indices Transgene analysis Wheat WRKY76 Plant Proteins Transcription Factors Reactive Oxygen Species
Beschreibung
Zusammenfassung:Copyright © 2024. Published by Elsevier Masson SAS.
WRKY transcription factor (TF) family acts as essential regulators in plant growth and abiotic stress responses. This study reported the function of TaWRKY76, a member of WRKY TF family in Triticum aestivum L., in regulating plant osmotic stress tolerance. TaWRKY76 transcripts were significantly upregulated upon drought and salt signaling, with dose extent- and stress temporal-dependent manners. Plant GUS activity assays suggested that stress responsive cis-acting elements, such as DRE and ABRE, exert essential roles in defining gene transcription under osmotic stress conditions. The TaWRKY76 protein targeted onto nucleus and possessed ability interacting with TaMYC2, a MYC TF member of wheat. TaWRKY76 and TaMYC2 positively regulated plant drought and salt adaptation by modulating osmotic stress-related physiological indices, including osmolyte contents, stomata movement, root morphology, and reactive oxygen species (ROS) homeostasis. Yeast one-hybrid assay indicated the binding ability of TaWRKY76 with promoters of TaDREB1;1, TaNCEB3, and TaCOR15;4. ChIP-PCR analysis confirmed that the osmotic stress genes are transcriptionally regulated by TaWRKY76. Moreover, the transgenic lines with knockdown of these stress-response genes displayed lowered plant biomass together with worsened root growth traits, decreased proline contents, and elevated ROS amounts. These results suggested that these stress defensive genes contributed to TaWRKY76-modulated osmotic stress tolerance. Highly positive correlations were observed between yield and the transcripts of TaWRKY76 in a wheat variety panel under field drought condition. A major haplotype TaWRKY76 Hap1 conferred improved drought tolerance. Our results suggested that TaWRKY76 is essential in plant drought and salt adaptation and a valuable target for molecular breeding stress-tolerant cultivars in Triticum aestivum L
Beschreibung:Date Completed 07.11.2024
Date Revised 07.11.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.109147