Physics-informed genetic programming for discovery of partial differential equations from scarce and noisy data

A novel framework is proposed that utilizes symbolic regression via genetic programming to identify free-form partial differential equations from scarce and noisy data. The framework successfully identified ground truth models for four synthetic systems (an isothermal plug flow reactor, a continuous...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 514(2024) vom: 01. Sept.
1. Verfasser: Cohen, Benjamin G (VerfasserIn)
Weitere Verfasser: Beykal, Burcu, Bollas, George
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Genetic Programming Model Discovery Partial Differential Equations Symbolic Regression
LEADER 01000caa a22002652 4500
001 NLM377964786
003 DE-627
005 20240925233006.0
007 cr uuu---uuuuu
008 240923s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2024.113261  |2 doi 
028 5 2 |a pubmed24n1548.xml 
035 |a (DE-627)NLM377964786 
035 |a (NLM)39309523 
035 |a (PII)113261 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cohen, Benjamin G  |e verfasserin  |4 aut 
245 1 0 |a Physics-informed genetic programming for discovery of partial differential equations from scarce and noisy data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A novel framework is proposed that utilizes symbolic regression via genetic programming to identify free-form partial differential equations from scarce and noisy data. The framework successfully identified ground truth models for four synthetic systems (an isothermal plug flow reactor, a continuously stirred tank reactor, a nonisothermal reactor, and viscous flow governed by Burgers' equation) from time-variant data collected at one location. A comparative analysis against the so-called weak Sparse Identification of Nonlinear Dynamics (SINDy) demonstrated the proposed framework's superior ability to identify meaningful partial differential equation (PDE) models when data was scarce. The framework was further tested for robustness to noise and scarcity, showing successful model recovery from as few as eight time series data points collected at a single point in space with 50% noise. These results emphasize the potential of the proposed framework for the discovery of PDE models when data collection is expensive or otherwise difficult 
650 4 |a Journal Article 
650 4 |a Genetic Programming 
650 4 |a Model Discovery 
650 4 |a Partial Differential Equations 
650 4 |a Symbolic Regression 
700 1 |a Beykal, Burcu  |e verfasserin  |4 aut 
700 1 |a Bollas, George  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 514(2024) vom: 01. Sept.  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:514  |g year:2024  |g day:01  |g month:09 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2024.113261  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 514  |j 2024  |b 01  |c 09