Physics-informed genetic programming for discovery of partial differential equations from scarce and noisy data

A novel framework is proposed that utilizes symbolic regression via genetic programming to identify free-form partial differential equations from scarce and noisy data. The framework successfully identified ground truth models for four synthetic systems (an isothermal plug flow reactor, a continuous...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 514(2024) vom: 01. Sept.
1. Verfasser: Cohen, Benjamin G (VerfasserIn)
Weitere Verfasser: Beykal, Burcu, Bollas, George
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Genetic Programming Model Discovery Partial Differential Equations Symbolic Regression