Physics-informed genetic programming for discovery of partial differential equations from scarce and noisy data
A novel framework is proposed that utilizes symbolic regression via genetic programming to identify free-form partial differential equations from scarce and noisy data. The framework successfully identified ground truth models for four synthetic systems (an isothermal plug flow reactor, a continuous...
Veröffentlicht in: | Journal of computational physics. - 1986. - 514(2024) vom: 01. Sept. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Journal of computational physics |
Schlagworte: | Journal Article Genetic Programming Model Discovery Partial Differential Equations Symbolic Regression |
Online verfügbar |
Volltext |