|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM37796252X |
003 |
DE-627 |
005 |
20240924233101.0 |
007 |
cr uuu---uuuuu |
008 |
240923s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1007/s10915-024-02612-3
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1547.xml
|
035 |
|
|
|a (DE-627)NLM37796252X
|
035 |
|
|
|a (NLM)39309294
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Altmann, R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Riemannian Newton Methods for Energy Minimization Problems of Kohn-Sham Type
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © The Author(s) 2024.
|
520 |
|
|
|a This paper is devoted to the numerical solution of constrained energy minimization problems arising in computational physics and chemistry such as the Gross-Pitaevskii and Kohn-Sham models. In particular, we introduce Riemannian Newton methods on the infinite-dimensional Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite-dimensional setting, which are suitable for variational spatial discretizations. A series of numerical experiments illustrates the performance of the methods and demonstrates their supremacy compared to other well-established schemes such as the self-consistent field iteration and gradient descent schemes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Grassmann manifold
|
650 |
|
4 |
|a Gross–Pitaevskii eigenvalue problem
|
650 |
|
4 |
|a Kohn–Sham model
|
650 |
|
4 |
|a Newton method
|
650 |
|
4 |
|a Riemannian optimization
|
650 |
|
4 |
|a Stiefel manifold
|
700 |
1 |
|
|a Peterseim, D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stykel, T
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of scientific computing
|d 1999
|g 101(2024), 1 vom: 15., Seite 6
|w (DE-627)NLM098177567
|x 0885-7474
|7 nnns
|
773 |
1 |
8 |
|g volume:101
|g year:2024
|g number:1
|g day:15
|g pages:6
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/s10915-024-02612-3
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 101
|j 2024
|e 1
|b 15
|h 6
|