Riemannian Newton Methods for Energy Minimization Problems of Kohn-Sham Type

© The Author(s) 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing. - 1999. - 101(2024), 1 vom: 15., Seite 6
1. Verfasser: Altmann, R (VerfasserIn)
Weitere Verfasser: Peterseim, D, Stykel, T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of scientific computing
Schlagworte:Journal Article Grassmann manifold Gross–Pitaevskii eigenvalue problem Kohn–Sham model Newton method Riemannian optimization Stiefel manifold
LEADER 01000caa a22002652 4500
001 NLM37796252X
003 DE-627
005 20240924233101.0
007 cr uuu---uuuuu
008 240923s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10915-024-02612-3  |2 doi 
028 5 2 |a pubmed24n1547.xml 
035 |a (DE-627)NLM37796252X 
035 |a (NLM)39309294 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Altmann, R  |e verfasserin  |4 aut 
245 1 0 |a Riemannian Newton Methods for Energy Minimization Problems of Kohn-Sham Type 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2024. 
520 |a This paper is devoted to the numerical solution of constrained energy minimization problems arising in computational physics and chemistry such as the Gross-Pitaevskii and Kohn-Sham models. In particular, we introduce Riemannian Newton methods on the infinite-dimensional Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite-dimensional setting, which are suitable for variational spatial discretizations. A series of numerical experiments illustrates the performance of the methods and demonstrates their supremacy compared to other well-established schemes such as the self-consistent field iteration and gradient descent schemes 
650 4 |a Journal Article 
650 4 |a Grassmann manifold 
650 4 |a Gross–Pitaevskii eigenvalue problem 
650 4 |a Kohn–Sham model 
650 4 |a Newton method 
650 4 |a Riemannian optimization 
650 4 |a Stiefel manifold 
700 1 |a Peterseim, D  |e verfasserin  |4 aut 
700 1 |a Stykel, T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d 1999  |g 101(2024), 1 vom: 15., Seite 6  |w (DE-627)NLM098177567  |x 0885-7474  |7 nnns 
773 1 8 |g volume:101  |g year:2024  |g number:1  |g day:15  |g pages:6 
856 4 0 |u http://dx.doi.org/10.1007/s10915-024-02612-3  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 101  |j 2024  |e 1  |b 15  |h 6