Riemannian Newton Methods for Energy Minimization Problems of Kohn-Sham Type

© The Author(s) 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing. - 1999. - 101(2024), 1 vom: 15., Seite 6
1. Verfasser: Altmann, R (VerfasserIn)
Weitere Verfasser: Peterseim, D, Stykel, T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of scientific computing
Schlagworte:Journal Article Grassmann manifold Gross–Pitaevskii eigenvalue problem Kohn–Sham model Newton method Riemannian optimization Stiefel manifold
Beschreibung
Zusammenfassung:© The Author(s) 2024.
This paper is devoted to the numerical solution of constrained energy minimization problems arising in computational physics and chemistry such as the Gross-Pitaevskii and Kohn-Sham models. In particular, we introduce Riemannian Newton methods on the infinite-dimensional Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite-dimensional setting, which are suitable for variational spatial discretizations. A series of numerical experiments illustrates the performance of the methods and demonstrates their supremacy compared to other well-established schemes such as the self-consistent field iteration and gradient descent schemes
Beschreibung:Date Revised 24.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0885-7474
DOI:10.1007/s10915-024-02612-3