Giant Hall Switching by Surface-State-Mediated Spin-Orbit Torque in a Hard Ferromagnetic Topological Insulator

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 23. Sept., Seite e2406772
1. Verfasser: Tai, Lixuan (VerfasserIn)
Weitere Verfasser: He, Haoran, Chong, Su Kong, Zhang, Huairuo, Huang, Hanshen, Qiu, Gang, Ren, Yuxing, Li, Yaochen, Yang, Hung-Yu, Yang, Ting-Hsun, Dong, Xiang, Dai, Bingqian, Qu, Tao, Shu, Qingyuan, Pan, Quanjun, Zhang, Peng, Xue, Fei, Li, Jie, Davydov, Albert V, Wang, Kang L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article current‐induced switching hard ferromagnets magnetic topological insulators spin‐orbit torque topological surface states
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin-orbit torque (SOT) and manipulate the magnetization with their unique topological surface states (TSS) with ultrahigh efficiency. Here, efficient SOT switching of a hard MTI, V-doped (Bi,Sb)2Te3 (VBST), with a large coercive field that can prevent the influence of an external magnetic field, is demonstrated. A giant switched anomalous Hall resistance of 9.2 kΩ is realized, among the largest of all SOT systems, which makes the Hall channel a good readout and eliminates the need to fabricate complicated magnetic tunnel junction (MTJ) structures. The SOT switching current density can be reduced to 2.8 × 105 A cm-2, indicating its high efficiency. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge-state-mediated to surface-state-mediated transport, thus enhancing the SOT effective field to (1.56 ± 0.12) × 10-6 T A-1 cm2 and the interfacial charge-to-spin conversion efficiency to 3.9 ± 0.3 nm-1. The findings establish VBST as an extraordinary candidate for energy-efficient magnetic memory devices
Beschreibung:Date Revised 23.09.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202406772