A Large-Scale Sensitivity Analysis on Latent Embeddings and Dimensionality Reductions for Text Spatializations

The semantic similarity between documents of a text corpus can be visualized using map-like metaphors based on twodimensional scatterplot layouts. These layouts result from a dimensionality reduction on the document-term matrix or a representation within a latent embedding, including topic models. T...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 17. Sept.
1. Verfasser: Atzberger, Daniel (VerfasserIn)
Weitere Verfasser: Cech, Tim, Scheibel, Willy, Dollner, Jurgen, Behrisch, Michael, Schreck, Tobias
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM377750999
003 DE-627
005 20240918233353.0
007 cr uuu---uuuuu
008 240918s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3456308  |2 doi 
028 5 2 |a pubmed24n1538.xml 
035 |a (DE-627)NLM377750999 
035 |a (NLM)39288065 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Atzberger, Daniel  |e verfasserin  |4 aut 
245 1 2 |a A Large-Scale Sensitivity Analysis on Latent Embeddings and Dimensionality Reductions for Text Spatializations 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The semantic similarity between documents of a text corpus can be visualized using map-like metaphors based on twodimensional scatterplot layouts. These layouts result from a dimensionality reduction on the document-term matrix or a representation within a latent embedding, including topic models. Thereby, the resulting layout depends on the input data and hyperparameters of the dimensionality reduction and is therefore affected by changes in them. Furthermore, the resulting layout is affected by changes in the input data and hyperparameters of the dimensionality reduction. However, such changes to the layout require additional cognitive efforts from the user. In this work, we present a sensitivity study that analyzes the stability of these layouts concerning (1) changes in the text corpora, (2) changes in the hyperparameter, and (3) randomness in the initialization. Our approach has two stages: data measurement and data analysis. First, we derived layouts for the combination of three text corpora and six text embeddings and a grid-search-inspired hyperparameter selection of the dimensionality reductions. Afterward, we quantified the similarity of the layouts through ten metrics, concerning local and global structures and class separation. Second, we analyzed the resulting 42 817 tabular data points in a descriptive statistical analysis. From this, we derived guidelines for informed decisions on the layout algorithm and highlight specific hyperparameter settings. We provide our implementation as a Git repository at hpicgs/Topic-Models-and-DimensionalityReduction-Sensitivity-Study and results as Zenodo archive at DOI:10.5281/zenodo.12772898 
650 4 |a Journal Article 
700 1 |a Cech, Tim  |e verfasserin  |4 aut 
700 1 |a Scheibel, Willy  |e verfasserin  |4 aut 
700 1 |a Dollner, Jurgen  |e verfasserin  |4 aut 
700 1 |a Behrisch, Michael  |e verfasserin  |4 aut 
700 1 |a Schreck, Tobias  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 17. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:17  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3456308  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 17  |c 09