Cross-Attention Regression Flow for Defect Detection

Defect detection from images is a crucial and challenging topic of industry scenarios due to the scarcity and unpredictability of anomalous samples. However, existing defect detection methods exhibit low detection performance when it comes to small-size defects. In this work, we propose a Cross-Atte...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 16., Seite 5183-5193
Auteur principal: Liu, Binhui (Auteur)
Autres auteurs: Guo, Tianchu, Luo, Bin, Cui, Zhen, Yang, Jian
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM37770797X
003 DE-627
005 20250306161057.0
007 cr uuu---uuuuu
008 240917s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3457236  |2 doi 
028 5 2 |a pubmed25n1258.xml 
035 |a (DE-627)NLM37770797X 
035 |a (NLM)39283772 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Binhui  |e verfasserin  |4 aut 
245 1 0 |a Cross-Attention Regression Flow for Defect Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Defect detection from images is a crucial and challenging topic of industry scenarios due to the scarcity and unpredictability of anomalous samples. However, existing defect detection methods exhibit low detection performance when it comes to small-size defects. In this work, we propose a Cross-Attention Regression Flow (CARF) framework to model a compact distribution of normal visual patterns for separating outliers. To retain rich scale information of defects, we build an interactive cross-attention pattern flow module to jointly transform and align distributions of multi-layer features, which is beneficial for detecting small-size defects that may be annihilated in high-level features. To handle the complexity of multi-layer feature distributions, we introduce a layer-conditional autoregression module to improve the fitting capacity of data likelihoods on multi-layer features. By transforming the multi-layer feature distributions into a latent space, we can better characterize normal visual patterns. Extensive experiments on four public datasets and our collected industrial dataset demonstrate that the proposed CARF outperforms state-of-the-art methods, particularly in detecting small-size defects 
650 4 |a Journal Article 
700 1 |a Guo, Tianchu  |e verfasserin  |4 aut 
700 1 |a Luo, Bin  |e verfasserin  |4 aut 
700 1 |a Cui, Zhen  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 16., Seite 5183-5193  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:16  |g pages:5183-5193 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3457236  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 16  |h 5183-5193