|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM37770797X |
003 |
DE-627 |
005 |
20250306161057.0 |
007 |
cr uuu---uuuuu |
008 |
240917s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2024.3457236
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1258.xml
|
035 |
|
|
|a (DE-627)NLM37770797X
|
035 |
|
|
|a (NLM)39283772
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Binhui
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Cross-Attention Regression Flow for Defect Detection
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Defect detection from images is a crucial and challenging topic of industry scenarios due to the scarcity and unpredictability of anomalous samples. However, existing defect detection methods exhibit low detection performance when it comes to small-size defects. In this work, we propose a Cross-Attention Regression Flow (CARF) framework to model a compact distribution of normal visual patterns for separating outliers. To retain rich scale information of defects, we build an interactive cross-attention pattern flow module to jointly transform and align distributions of multi-layer features, which is beneficial for detecting small-size defects that may be annihilated in high-level features. To handle the complexity of multi-layer feature distributions, we introduce a layer-conditional autoregression module to improve the fitting capacity of data likelihoods on multi-layer features. By transforming the multi-layer feature distributions into a latent space, we can better characterize normal visual patterns. Extensive experiments on four public datasets and our collected industrial dataset demonstrate that the proposed CARF outperforms state-of-the-art methods, particularly in detecting small-size defects
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Guo, Tianchu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cui, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 33(2024) vom: 16., Seite 5183-5193
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnas
|
773 |
1 |
8 |
|g volume:33
|g year:2024
|g day:16
|g pages:5183-5193
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2024.3457236
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2024
|b 16
|h 5183-5193
|