CLT for NESS of a reaction-diffusion model
© The Author(s) 2024.
Veröffentlicht in: | Probability theory and related fields. - 1998. - 190(2024), 1-2 vom: 04., Seite 337-377 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Probability theory and related fields |
Schlagworte: | Journal Article Exclusion process Fluctuations Non-equilibrium state SPDEs |
Zusammenfassung: | © The Author(s) 2024. We study the scaling properties of the non-equilibrium stationary states (NESS) of a reaction-diffusion model. Under a suitable smallness condition, we show that the density of particles satisfies a law of large numbers with respect to the NESS, with an explicit rate of convergence, and we also show that at mesoscopic scales the NESS is well approximated by a local equilibrium (product) measure, in the total variation distance. In addition, in dimensions d ≤ 3 we show a central limit theorem for the density of particles under the NESS. The corresponding Gaussian limit can be represented as an independent sum of a white noise and a massive Gaussian free field, and in particular it presents macroscopic correlations |
---|---|
Beschreibung: | Date Revised 16.09.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 0178-8051 |
DOI: | 10.1007/s00440-024-01293-1 |