Multifunctional Acetaminophen Interlayer for High Efficiency and Durability Lead-Lean Perovskite Solar Cells

Due to the easy oxidation of Sn2+, which leads to form tin vacancy defects and poor perovskite film quality, caused by the rapid crystallization rate in tin-based perovskite solar cells (PSCs), their efficiency lags far behind that of lead-based PSCs. To improve the photovoltaic (PV) performance and...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - (2024) vom: 12. Sept.
Auteur principal: Ren, Xuefei (Auteur)
Autres auteurs: Wang, Shuqi, Cai, Hengzhuo, Qiu, Peng, Wang, Qiwei, Lu, Xubing, Gao, Xingsen, Shui, Lingling, Wu, Sujuan, Liu, Jun-Ming
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:Due to the easy oxidation of Sn2+, which leads to form tin vacancy defects and poor perovskite film quality, caused by the rapid crystallization rate in tin-based perovskite solar cells (PSCs), their efficiency lags far behind that of lead-based PSCs. To improve the photovoltaic (PV) performance and stability of FA0.9PEA0.1SnI3-based PSCs (T-PSCs), a small amount of Pb(SCN)2 is introduced into a perovskite precursor as an antioxidant, and acetaminophen (ACE) with various functional groups is used to modify a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/perovskite interface. The results show that the Pb(SCN)2 additive and ACE interfacial modification can not only optimize energy level alignment in T-PSCs but also inhibit Sn2+ oxidation to reduce the trap-state density, resulting in promoted carrier transport. The synergetic effect of the Pb(SCN)2 antioxidant and ACE interfacial modification significantly reduces nonradiative recombination and improves the PV performance and stability of T-PSCs. Consequently, the unsealed T-PSCs with the Pb(SCN)2 additive and ACE modification achieve a champion efficiency of 12.04% and maintain 99% of their initial PCE after being stored in N2 for more than 2100 h, while reference T-PSCs demonstrate a champion PCE of 6.20% and retain only 72% of its initial PCE. Moreover, the modified T-PSCs without encapsulation demonstrate much better stability in humid air
Description:Date Revised 12.09.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c01681