An automatic classification method of testicular histopathology based on SC-YOLO framework

The pathological diagnosis and treatment of azoospermia depend on precise identification of spermatogenic cells. Traditional methods are time-consuming and highly subjective due to complexity of Johnsen score, posing challenges for accurately diagnosing azoospermia. Here, we introduce a novel SC-YOL...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:BioTechniques. - 1988. - 76(2024), 9 vom: 15., Seite 443-452
1. Verfasser: Wu, Jinggen (VerfasserIn)
Weitere Verfasser: Sun, Yao, Jiang, Yangbo, Bu, Yangcheng, Chen, Chong, Li, Jingping, Li, Lejun, Chen, Weikang, Cheng, Keren, Xu, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:BioTechniques
Schlagworte:Journal Article SC-YOLO YOLO framework azoospermia johnsen score testicular histopathology
Beschreibung
Zusammenfassung:The pathological diagnosis and treatment of azoospermia depend on precise identification of spermatogenic cells. Traditional methods are time-consuming and highly subjective due to complexity of Johnsen score, posing challenges for accurately diagnosing azoospermia. Here, we introduce a novel SC-YOLO framework for automating the classification of spermatogenic cells that integrates S3Ghost module, CoordAtt module and DCNv2 module, effectively capturing texture and shape features of spermatogenic cells while reducing model parameters. Furthermore, we propose a simplified Johnsen score criteria to expedite the diagnostic process. Our SC-YOLO framework presents the higher efficiency and accuracy of deep learning technology in spermatogenic cell recognition. Future research endeavors will focus on optimizing the model's performance and exploring its potential for clinical applications
Beschreibung:Date Completed 24.10.2024
Date Revised 24.10.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1940-9818
DOI:10.1080/07366205.2024.2393544