|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM377332291 |
003 |
DE-627 |
005 |
20240909234343.0 |
007 |
cr uuu---uuuuu |
008 |
240909s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202407982
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1528.xml
|
035 |
|
|
|a (DE-627)NLM377332291
|
035 |
|
|
|a (NLM)39246135
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ma, Zheng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Synergistic Performance of Thermoelectric and Mechanical in Nanotwinned High-Entropy Semiconductors AgMnGePbSbTe5
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 09.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Introducing nanotwins in thermoelectric materials represents a promising approach to achieving such a synergistic combination of thermoelectric properties and mechanical properties. By increasing configurational entropy, a sharply reduced stacking fault energy in a new nanotwinned high-entropy semiconductor AgMnGePbSbTe5 is reached. Dense coherent nanotwin boundaries in this system provide an efficient phonon scattering barrier, leading to a high figure of merit ZT of ≈2.46 at 750 K and a high average ZT of ≈1.54 (300-823 K) with the presence of Ag2Te nanoprecipitate in the sample. More importantly, owing to the dislocation pinning caused by coherent nanotwin boundaries and the chemical short-range disorder caused by the high configurational entropy effect, AgMnGePbSbTe5 also exhibits robust mechanical properties, with flexural strength of 82 MPa and Vickers hardness of 210 HV
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a AgMnGePbSbTe5
|
650 |
|
4 |
|a high entropy semiconductor
|
650 |
|
4 |
|a nanotwinned
|
650 |
|
4 |
|a thermoelectric material
|
700 |
1 |
|
|a Luo, Yubo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dong, Jinfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yukun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Dan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Wang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Chengjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Yingchao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Qinghui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yin, Huabing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dravid, Vinayak P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Qiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Shaoping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Qingyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Junyou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kanatzidis, Mercouri G
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 09. Sept., Seite e2407982
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2024
|g day:09
|g month:09
|g pages:e2407982
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202407982
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 09
|c 09
|h e2407982
|