Contrastive Open-Set Active Learning-Based Sample Selection for Image Classification

In this paper, we address a complex but practical scenario in Active Learning (AL) known as open-set AL, where the unlabeled data consists of both in-distribution (ID) and out-of-distribution (OOD) samples. Standard AL methods will fail in this scenario as OOD samples are highly likely to be regarde...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 04., Seite 5525-5537
1. Verfasser: Yan, Zizheng (VerfasserIn)
Weitere Verfasser: Ruan, Delian, Wu, Yushuang, Huang, Junshi, Chai, Zhenhua, Han, Xiaoguang, Cui, Shuguang, Li, Guanbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we address a complex but practical scenario in Active Learning (AL) known as open-set AL, where the unlabeled data consists of both in-distribution (ID) and out-of-distribution (OOD) samples. Standard AL methods will fail in this scenario as OOD samples are highly likely to be regarded as uncertain samples, leading to their selection and wasting of the budget. Existing methods focus on selecting the highly likely ID samples, which tend to be easy and less informative. To this end, we introduce two criteria, namely contrastive confidence and historical divergence, which measure the possibility of being ID and the hardness of a sample, respectively. By balancing the two proposed criteria, highly informative ID samples can be selected as much as possible. Furthermore, unlike previous methods that require additional neural networks to detect the OOD samples, we propose a contrastive clustering framework that endows the classifier with the ability to identify the OOD samples and further enhances the network's representation learning. The experimental results demonstrate that the proposed method achieves state-of-the-art performance on several benchmark datasets
Beschreibung:Date Revised 07.10.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3451928